utils
Utility functions for the FPM reconstruction process.
Function: ft
fpm_py.utils.ft(x: torch.Tensor):
...
Simple macro for 2D Fourier transform.
Args:
x
(torch.Tensor
): The input image.
Returns:
torch.Tensor
: The Fourier transform of the input image.
Function: ift
fpm_py.utils.ift(x: torch.Tensor):
...
Simple macro for 2D Inverse Fourier transform.
Args:
x
(torch.Tensor
): The input Fourier domain image.
Returns:
torch.Tensor
: The inverse Fourier transform of the input image.
Function: kvector_to_x_y
fpm_py.utils.kvector_to_x_y(
fourier_center: tuple[int, int],
image_size: tuple[int, int],
du: float,
k_vector: torch.Tensor
):
...
Converts k-vector to x and y coordinates in the spatial domain.
Args:
fourier_center (tuple[int, int]): The center of the Fourier domain image. image_size (tuple[int, int]): The size of the image. du (float): The pixel size in the Fourier domain. k_vector (torch.Tensor): The k-vector associated with the image.
Returns:
tuple[int, int]: The x and y coordinates in the spatial domain.
Function: overlap_matrices
fpm_py.utils.overlap_matrices(
larger: torch.Tensor,
smaller: torch.Tensor,
bottom: int,
left: int
):
...
Adds a smaller matrix to a larger matrix at the specified position.
Args:
larger
(torch.Tensor
): The larger matrix.smaller
(torch.Tensor
): The smaller matrix.bottom
(int
): The bottom row index to place the smaller matrix.left
(int
): The left column index to place the smaller matrix.
Returns:
torch.Tensor
: The updated larger matrix.
Function: circle_like
fpm_py.utils.circle_like(array: torch.Tensor):
...
Creates a complex-valued circular mask with the same shape as the input array.
Args:
array
(torch.Tensor
): The input array.
Returns:
torch.Tensor
: The circular mask.